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Abstract We study convergence of a semismooth Newton method for generalized semi-
infinite programming problems with convex lower level problems where, using NCP func-
tions, the upper and lower level Karush-Kuhn-Tucker conditions of the optimization problem
are reformulated as a semismooth system of equations. Nonsmoothness is caused by a possible
violation of strict complementarity slackness. We show that the standard regularity condition
for convergence of the semismooth Newton method is satisfied under natural assumptions
for semi-infinite programs. In fact, under the Reduction Ansatz in the lower level and strong
stability in the reduced upper level problem this regularity condition is satisfied. In particular,
we do not have to assume strict complementary slackness in the upper level. Numerical exam-
ples from, among others, design centering and robust optimization illustrate the performance
of the method.
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1 Introduction

This article studies a numerical solution method for generalized semi-infinite optimization
problems, that is, problems of the type

GSI P : minimize f (x) subject to x ∈ M
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with

M = { x ∈ R
n | g(x, y) ≤ 0 for all y ∈ Y (x) }

and

Y (x) = { y ∈ R
m | v j (x, y) ≤ 0, j ∈ Q }.

All defining functions f, g, v j , j ∈ Q = {1, . . . , q}, are assumed to be real-valued
and at least twice continuously differentiable on their respective domains. Moreover, we
assume that the set-valued mapping Y : R

n⇒R
m is locally bounded, that is, for each x̄ ∈ R

n

there exists a neighborhood U of x̄ such that
⋃

x∈U Y (x) is bounded in R
m , and we require

Y (x) �= ∅ for all x ∈ R
n .

Note that the possibly infinite index set Y (x) of the semi-infinite inequality constraint is
allowed to vary with x in a GSIP. As opposed to this, in a standard semi-infinite optimization
problem (SIP) the index set is fixed, that is, we have Y (x) ≡ Y , and if Y is described by
functional constraints, then the vector function v does not depend on x . For surveys about
theory and methods for standard semi-infinite optimization we refer to [4,7,19], whereas
introductions to generalized semi-infinite programming are given in [22] and in the recent
tutorial paper [6].

If Y is even a finite set, we arrive at a usual nonlinear programming problem. Many solution
methods for nonlinear programming problems base on solving their Karush-Kuhn-Tucker
(KKT) system, that is, a necessary first order optimality condition. It is well-known that
the complementarity conditions in the KKT system need special attention in any numerical
approach. One possibility for their treatment is a reformulation by so-called NCP functions
(see, e.g., [16] and the references therein), which reduces the problem to the solution of a
certain system of equations which is either nonsmooth or smooth but degenerate. For spe-
cial NCP functions these equations can be solved by so-called semismooth Newton methods
where, in analogy to the standard Newton method, their convergence depends on a regularity
condition in the solution point. It is important to note that the nonsmoothness of the system
of equations stems from a possible lack of strict complementary slackness at a solution.

Such KKT methods have also been suggested for standard semi-infinite programming
problems, where the KKT conditions take a somewhat more complicated form [7]. In par-
ticular, they involve an upper and a lower level problem. In the article [18] it was recently
suggested to use NCP functions also for a nonsmooth reformulation of the KKT conditions
in standard semi-infinite programming, and a regularity condition to guarantee convergence
of a certain semismooth Newton method was proposed.

It turns out, however, that strict complementarity is a part of the regularity condition from
[18], in the upper as well as in the lower level problem. A numerical method which searches
a point with these regularity conditions would not need to use NCP functions but, in fact,
already the standard Newton method would converge under these assumptions.

The aim of the present article is threefold: we point out an important pitfall in the solution
of KKT systems for semi-infinite programs, we present a regularity condition which does not
assume strict complementarity in the upper level problem, thus justifying the NCP function
approach for semi-infinite programs, and at the same time we transfer this approach from
standard to generalized semi-infinite programming. Note that this method will merely search
for KKT points of the optimization problem, whereas global optimality plays a crucial role
in the treatment of the so-called lower level problem (see Sect. 3.1).

The article is organized as follows. In Sect. 2 we briefly review the semismooth Newton
method and a basic convergence result. Section 3 recalls the semismooth system of equations
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which corresponds to the KKT system of SIP, and derives such a system for GSIP. Here,
Sect. 3.1 collects basic facts about the bilevel structure of semi-infinite programming, and
Sect. 3.2 reviews the KKT approach from [18] for standard semi-infinite programs, pointing
out the mentioned pitfall. Section 3.3 is devoted to the Reduction Ansatz, a basic regularity
condition in semi-infinite programming. We need it not only to formulate our convergence
result, but also to derive an appropriate semismooth system of equations for the generalized
semi-infinite case in Sect. 3.4.

Section 4 contains our main result, a convergence condition for the application of the semi-
smooth Newton method to GSIP where strict complementarity does not have to be assumed
in the upper level problem. Section 5 illustrates the performance of the semismooth Newton
method for several generalized and standard semi-infinite programs arising in applications,
and Sect. 6 concludes this article with some final remarks. Some auxiliary results about NCP
functions and block matrices are given in an appendix.

2 Preliminaries on the semismooth Newton approach

For a locally Lipschitzian function F : R
n → R

m let ∂F(x) denote Clarke’s generalized
Jacobian at x [2]. F is called semismooth at x ∈ R

n if F is directionally differentiable at x
and if for all V ∈ ∂F(x + d) and d → 0 we have

F ′(x; d) = V d + o(‖d‖).

In some sense, semismoothness is equivalent to the uniform convergence of directional deriv-
atives in all directions [17]. Semismoothness was originally introduced by Mifflin for func-
tionals [14]. In [17], the definition of semismooth functions was extended to F : R

n → R
m .

Convex functions, piecewise linear functions and smooth functions are examples of semi-
smooth functions.

Furthermore, F is called strongly semismooth [16] at x if F is semismooth at x and if for
all V ∈ ∂F(x + d) and d → 0 we have

V d − F ′(x; d) = O(‖d‖2).

For other definitions and properties of semismoothness we refer to [17].
In analogy to the standard Newton method, the basic iteration of the semismooth Newton

approach for solving the equation F(z) = 0 is [17]

zk+1 = zk − (W k)−1 F(zk) (1)

with W k ∈ ∂F(zk).
To study convergence properties of the semismooth Newton method, the concept of CD

regularity was introduced. Here, CD stands for the Clarke subdifferential [16]. In fact, let
F : R

n → R
n be semismooth. Then F is called CD-regular at a point x̄ , if all matrices in

∂F(x̄) are nonsingular [16].

Theorem 2.1 ([17]) Suppose that x̄ is a solution of F(x) = 0, and F is semismooth and
CD-regular at x̄ . Then the iteration method (1) is well defined and {xk}, the sequence gener-
ated by (1), converges to x̄ q-superlinearly in a neighborhood of x̄ . If F is strongly semismooth
at x̄ , then the convergence is q-quadratic.

123



248 J Glob Optim (2008) 41:245–266

3 Semismooth optimality conditions for SIP and GSIP

3.1 The bilevel structure of semi-infinite programming

The theoretical and numerical treatment of GSIP is closely related to the bilevel structure of
semi-infinite programming. In fact, under our assumptions it is easy to see that the semi-infi-
nite constraint in GSIP is equivalent to

ϕ(x) = max
y∈Y (x)

g(x, y) ≤ 0,

which means that the feasible set M of GSIP is the lower level set of some optimal value
function:

M = { x ∈ R
n | ϕ(x) ≤ 0 }.

The function ϕ is the optimal value function of the so-called lower level problem

Q(x) : max
y∈Rm

g(x, y) subject to v j (x, y) ≤ 0, j ∈ Q. (2)

In contrast to the upper level problem which consists in minimizing f over M , in the lower
level problem x plays the role of an n-dimensional parameter, and y is the decision variable.

The main computational problem in semi-infinite programming is that the lower level
problem has to be solved to global optimality, even if only a stationary point of the upper
level problem is sought. In fact, standard NLP solvers can only be expected to produce a
local maximizer yloc of Q(x̄) which is not necessarily a global maximizer yglob . Even if
g(x̄, yloc) ≤ 0 holds, x̄ might be infeasible since g(x̄, yloc) ≤ 0 < ϕ(x̄) = g(x̄, yglob) cannot
be ruled out in general.

Since, in the following, we aim to use the approach from [18] and replace the lower level
problem by its KKT conditions, we must make sure that a solution of the KKT system is
a global maximizer. We emphasize that otherwise one might compute infeasible points for
the semi-infinite problem, which is a major pitfall of the approach at hand. In particular, the
concept of substationary points from [18] may entail infeasibility.

A natural assumption under which a solution of the KKT conditions leads to a global max-
imizer is convexity of the lower level problem, that is, for each x ∈ R

n the function g(x, ·)
is concave, and the set Y (x) is convex. We thus make the following assumption throughout
the remainder of this article.

Assumption 3.1 For all x ∈ R
n the lower level problem Q(x) is convex.

Note that in generalized semi-infinite optimization many relevant applications have convex
lower level problems (see also Sect. 5). On the other hand, in standard semi-infinite optimi-
zation this situation is rather rare. However, techniques using lower level convexity, like the
one discussed in the present paper, can be combined with adaptive convexification methods
like the one from [3] to treat semi-infinite programs with nonconvex lower level problems.

3.2 Semismooth optimality conditions for standard SIP

Let us first consider the standard semi-infinite case. As mentioned in the introduction, a
standard semi-infinite problem has the form

SI P : minimize f (x) subject to x ∈ M
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with

M = { x ∈ R
n | g(x, y) ≤ 0 for all y ∈ Y }

and

Y = { y ∈ R
m | v j (y) ≤ 0, j ∈ Q }.

To formulate first and second order optimality conditions, the following notation will be used.
For a continuously differentiable function f : R

n → R, we denote the gradient in row form

by D f (x) =
[
∂ f
∂x1
,
∂ f
∂x2
, . . . ,

∂ f
∂xn

]
, and in column form by ∇ f (x) = DT f (x). For a continu-

ously differentiable function F : R
n → R

r we denote the Jacobian of F at x ∈ R
n by DF(x)

whereas the transposed Jacobian is ∇F(x). For a function g : R
n × R

r → R we denote by
∇x g(x, y) the gradient of g at (x, y) with respect to x and by ∇2

xx g(x, y), ∇2
xy g(x, y) =

Dy∇x g(x, y) and ∇2
yy g(x, y), the respective n ×n, n ×r and r ×r matrices of second order

partial derivatives of g at (x, y).
For x̄ ∈ M let

Y0(x̄) = {y ∈ Y | g(x̄, y) = 0}
denote the (possibly infinite) set of active indices of x̄ . Note that Y0(x̄) coincides with the set
of global maximizers of Q(x̄) in the case ϕ(x̄) = 0.

The Extended Mangasarian-Fromovitz Constraint Qualification (EMFCQ) holds at x̄ , if
there is a vector d ∈ R

n such that

Dx g(x̄, y)d < 0 for all y ∈ Y0(x̄).

Theorem 3.2 ([9]) Let x̄ be a local minimizer of SIP at which EMFCQ is satisfied. Then
there are a p ∈ {0, . . . , n}, multipliers µ̄i ≥ 0 and active indices ȳi ∈ Y0(x̄), i ∈ P =
{1, 2, . . . , p}, such that

∇ f (x̄)+
p∑

i=1

µ̄i∇x g(x̄, ȳi ) = 0. (3)

Next we complement the upper level first order condition from Theorem 3.2 by a lower
level first order condition. In fact, since the active indices ȳi ∈ Y0(x̄), i ∈ P , are global
solutions of Q(x̄), under some constraint qualification like Slater’s condition in the lower
level problem (2), there exist vectors of Lagrange multipliers γ̄ i ∈ R

q such that

∇y g(x̄, ȳi )− ∑q
j=1 γ̄

i
j ∇yv j (ȳi ) = 0, i ∈ P,

γ̄ i
j ≥ 0, v j (ȳi ) ≤ 0, γ̄ i

j v j (ȳi ) = 0, i ∈ P, j ∈ Q.
(4)

Recall that by Assumption 3.1 the KKT conditions of the lower level problem are sufficient
for feasibility in the semi-infinite problem.

By (3) and (4), we arrive at the following equalities and inequalities:

∇ f (x̄)+ ∑p
i=1 µ̄i∇x g(x̄, ȳi ) = 0,

µ̄i ≥ 0, g(x̄, ȳi ) = 0, i ∈ P,

∇y g(x̄, ȳi )− ∑q
j=1 γ̄

i
j ∇yv j (ȳi ) = 0, i ∈ P,

γ̄ i
j ≥ 0, v j (ȳi ) ≤ 0, γ̄ i

j v j (ȳi ) = 0, i ∈ P, j ∈ Q.

(5)
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Recall that a function ψ : R
2 → R is called an NCP-function [13] if

ψ(a, b) = 0 if and only if a ≥ 0, b ≥ 0 and ab = 0.

Here, NCP stands for nonlinear complementarity problem. Important examples of NCP func-
tions are the Fischer-Burmeister function

ψF B(a, b) =
√

a2 + b2 − a − b

and the min function

ψmin(a, b) = − min{a, b}.
With any NCP function ψ we may reformulate (5) as a system of equations:

∇ f (x̄)+ ∑p
i=1 µ̄i∇x g(x̄, ȳi ) = 0,

ψ(µ̄i ,−g(x̄, ȳi )) = 0, i ∈ P,

∇y g(x̄, ȳi )− ∑q
j=1 γ̄

i
j ∇yv j (ȳi ) = 0, i ∈ P,

ψ(γ̄ i
j ,−v j (ȳi )) = 0, i ∈ P, j ∈ Q.

(6)

As observed in [18], the system of Eq. 6 is not directly equivalent to (5). The system (6)
allows the case that

µ̄i = 0, g(x̄, ȳi ) < 0.

However, if there is an n + (m +q +1)p dimensional vector, say (x̄, µ̄, ȳ, γ̄ ), satisfying (6),
we may drop the variables indexed by i with µ̄i = 0. Thus, we get a solution of (5). On the
other hand, a solution of (5) obviously satisfies (6). In this sense, (5) and (6) are equivalent,
and the solution of (5) amounts to finding a zero of the function T : R

N → R
N

T (z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∇ f (x)+ ∑p
i=1 µi∇x g(x, yi )

ψ(µ1,−g(x, y1))
...

ψ(µp,−g(x, y p))

∇y g(x, y1)− ∑q
j=1 γ

1
j ∇yv j (y1)

ψ(γ 1
1 ,−v1(y1))

...

ψ(γ 1
q ,−vq(y1))

...

∇y g(x, y p)− ∑q
j=1 γ

p
j ∇yv j (y p)

ψ(γ
p

1 ,−v1(y p))
...

ψ(γ
p

q ,−vq(y p))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7)

where N = n + (m + q + 1)p with z = (xT , µT , yT , γ T )T ∈ R
n+(m+q+1)p, x ∈ R

n, µ ∈
R

p, y ∈ R
mp and γ ∈ R

qp .
Recall that we assume twice continously differentiable functions g and v. If, in the defini-

tion of T , we use the special NCP functions ψF B or ψmin , then a result from [16] guarantees
that T is strongly semismooth. We may thus apply the semismooth Newton method from
Sect. 2 to T and expect q-quadratic convergence under CD-regularity in the solution point.
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As we will see in Sect. 4, CD-regularity is strongly related to the so-called Reduction
Ansatz in the lower level problem, which we present next. In addition, the Reduction An-
satz will also allow us to construct the function T for generalized semi-infinite optimization
problems.

3.3 The Reduction Ansatz

Consider a feasible point x̄ of GSIP and its set of active indices

Y0(x̄) = {y ∈ Y (x̄)| g(x̄, y) = 0}.
Suppose that the following conditions (Q-I)–(Q-III) hold at some ȳ ∈ Y0(x̄) in Q(x̄):

(Q-I) The linear independence constraint qualification:

(L I )Q(x̄) {∇yv j (x̄, ȳ)| j ∈ Q0(x̄, ȳ)} is a linearly independent family, where
Q0(x̄, ȳ) = { j ∈ Q | v j (x̄, ȳ) = 0} is the set of lower level active indices at
ȳ ∈ Y (x̄).
Because of Q-I, we have the following lower level Karush-Kuhn-Tucker conditions:
there exists a unique vector of Lagrange multipliers γ̄ ∈ R

q such that

(KKT)Q(x̄)

⎧
⎪⎪⎨

⎪⎪⎩

∇y g(x̄, ȳ)− ∑q
j=1 γ̄ j∇yv j (x̄, ȳ) = 0

v j (x̄, ȳ) ≤ 0
γ̄ j ≥ 0

γ̄ jv j (x̄, ȳ) = 0, j ∈ Q.

⎫
⎪⎪⎬

⎪⎪⎭
(8)

(Q-II) Strict complementarity: for each j ∈ Q: γ̄ j > 0, v j (x̄, ȳ)=0 or γ̄ j=0, v j (x̄, ȳ)< 0.
(Q-III) The second order sufficiency condition:

(SO SC)Q(x̄)

{
ηT ∇2

yL(x̄, ȳ, γ̄ )η < 0 for all η ∈ G Q(x̄)\{0},where
G Q(x̄) = {η ∈ R

m | Dyv j (x̄, ȳ)η = 0, j ∈ Q0(x̄, ȳ)}
}

(9)

with L(x̄, y, γ ) = g(x̄, y) − ∑q
j=1 γ jv j (x̄, y), the Lagrangian associated with

Q(x̄).

Under the conditions (Q-I) to (Q-III) ȳ is called a nondegenerate global maximizer of the
lower level problem in the sense of Jongen/Jonker/Twilt [10]. The Reduction Ansatz is said
to hold at x̄ ∈ M if all elements ȳ ∈ Y0(x̄) are nondegenerate for the lower level problem.

Suppose that the Reduction Ansatz holds, then we can reduce GSIP locally to a smooth
finite optimization problem GSIPred , the so-called reduced GSIP, as given in the next
theorem.

Theorem 3.3 ([8]) Let the Reduction Ansatz be satisfied at a feasible point x̄ of GSIP. Then,

(a) The active index set is finite, Y0(x̄) = {ȳ1, ȳ2, . . . , ȳ p}, and there exist neighborhoods
Ux̄ of x̄ and Vȳi of ȳi and unique C1−functions

yi : Ux̄ → Vȳi , where yi (x̄) = ȳi ,

γ i : Ux̄ → R
q , where γ i (x̄) = γ̄ i ,

such that for every x ∈ Ux̄ the value yi (x) is the unique local maximizer of Q(x) in
Vȳi with corresponding Lagrange multiplier vector γ i (x).
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(b) The following finite reduction holds: x̄ is a solution of GSIP, locally in a neighborhood
Ux̄ of x̄ , if and only if x̄ is a local solution of the so-called reduced problem

GSIPred : min
x∈Ux̄

f (x) s.t. ϕi (x) = g(x, yi (x)) ≤ 0, f or all i = 1, 2, . . . , p.

(c) The functions ϕi from part (b) are of class C2, and for all x ∈ Ux̄ their gradients satisfy

Dxϕi (x) = DxL(x, yi (x), γ i (x)). (10)

Remark 3.4 For standard SIP the formula in Theorem 3.3(c) simplifies to

Dxϕi (x) = Dx g(x, yi (x)).

3.4 Semismooth optimality conditions for GSIP

If x̄ ∈ M is a local minimizer of GSIP at which the Reduction Ansatz holds, then, by Theo-
rem 3.3, x̄ is also a local minimizer of the locally reduced problem GSIPred , and necessary
optimality conditions for x̄ in the reduced problem are also necessary optimality conditions
for x̄ in the original problem. In particular, if x̄ ∈ M is a local minimizer of GSIP at which the
Reduction Ansatz and the Mangasarian-Fromovitz constraint qualification hold, then there
exist a p ∈ {1, . . . , n}, and multipliers µ̄i ≥ 0, i ∈ P = {1, . . . , p}, such that

∇ f (x̄)+
p∑

i=1

µ̄i∇ϕi (x̄) = 0.

Note that all constraints in GSIPred are active at x̄ by construction, that is, we have ϕi (x̄) = 0
for all i ∈ P .

Using ϕi (x̄) = g(x̄, ȳi ), the fact that each ȳi is a global maximizer of the lower level
problem, as well as the evaluation of (10) at x̄ , we arrive at the system

∇ f (x̄)+ ∑p
i=1 µ̄i∇xL(x̄, ȳi , γ̄ i ) = 0,

µ̄i ≥ 0, g(x̄, ȳi ) = 0, i ∈ P,

∇y g(x̄, ȳi )− ∑q
j=1 γ̄

i
j ∇yv j (x̄, ȳi ) = 0, i ∈ P,

γ̄ i
j ≥ 0, v j (x̄, ȳi ) ≤ 0, γ̄ i

j v j (x̄, ȳi ) = 0, i ∈ P, j ∈ Q.

(11)

With any NCP function ψ , along the same lines as in Sect. 3.2 the solution of (11) is seen to
be equivalent to finding a zero of the function
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T (z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∇ f (x)+ ∑p
i=1 µi∇xL(x, yi , γ i )

ψ(µ1,−g(x, y1))
...

ψ(µp,−g(x, y p))

∇y g(x, y1)− ∑q
j=1 γ

1
j ∇yv j (x, y1)

ψ(γ 1
1 ,−v1(x, y1))

...

ψ(γ 1
q ,−vq(x, y1))

...

∇y g(x, y p)− ∑q
j=1 γ

p
j ∇yv j (x, y p)

ψ(γ
p

1 ,−v1(x, y p))
...

ψ(γ
p

q ,−vq(x, y p))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(12)

with z = (xT , µT , yT , γ T )T ∈ R
N , N = n + (m + q + 1)p, x ∈ R

n , µ ∈ R
p , y ∈ R

mp and
γ ∈ R

qp . Again, T is strongly semismooth under our assumptions.
We emphasize that for a standard SIP the term ∇xL(x, yi , γ i ) in T is replaced by

∇x g(x, yi ), and v j (x, yi ) by v j (yi ), that is, the function T from (12) generalizes the function
T from (7) from SIP to GSIP. Note that for standard SIP it is not necessary to assume the
Reduction Ansatz to derive the function T . However, the situation for GSIP is not essentially
more restrictive, since below we will anyway assume the Reduction Ansatz at the solution
point for our convergence result, and the Reduction Ansatz at local minimizers of GSIP is a
weak assumption [5].

4 Convergence of the semismooth Newton method

In this section we wish to apply the semismooth Newton approach from Sect. 2 to find a
zero of the function T from (12). In particular, we want to use Theorem 2.1 and, thus, find a
sufficient condition for CD-regularity of T in a solution point z̄.

The part of this condition concerning the lower level problem will be the Reduction Ansatz,
while in the upper level problem we will assume the so-called Robinson condition [20].

In fact, consider x̄ ∈ M and the locally reduced problem GSIPred where, according to
the definition of T , we neglect the fact that all constraints ϕi , i ∈ P, are active by their
definition. Let P0(x̄) = {i ∈ P |ϕi (x̄) = 0} be the set of active indices at x̄ for the upper level
problem. Recall from Theorem 3.3(c) that the auxiliary functions ϕi , i ∈ P , in the reduced
problem GSIPred are twice continuously differentiable, so that it makes sense to impose a
second order regularity condition on GSIPred .

The Robinson condition is said to hold at x̄ if the following conditions (GSIP-I) and
(GSIP-II) are satisfied:

(GSIP-I) The linear independence constraint qualification:

(L I )GSI P {∇xL(x̄, ȳi , γ̄ i ) | i ∈ P0(x̄)} is a linearly independent family.

If x̄ is a local minimizer, then there exists a unique vector µ̄ ∈ R
p of Lagrange

multipliers with
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(KKT)GSI P ∇ f (x̄)+
p∑

i=1

µ̄i∇xL(x̄, ȳi , γ̄ i ) = 0,

µ̄i ≥ 0, g(x̄, ȳi ) ≤ 0, µ̄i g(x̄, ȳi ) = 0, i ∈ P.

(GSIP-II) The strong second order sufficiency condition:

(SSO SC)GSI P

{
ξT ∇2

x L(x̄, ȳ, µ̄, γ̄ )ξ > 0 for all ξ ∈ GGSI P\{0} with
GGSI P = {d ∈ R

n | Dx L(x̄, ȳi , γ̄ i )d = 0 for i ∈ P+(x̄)}.
}

with P+(x̄) = {i ∈ P0(x̄) | µ̄i > 0}. Here, ∇2
x L(x̄, ȳ, µ̄, γ̄ ) stands for the

Hessian of the Lagrangian f (x) + ∑p
i=1 µiϕi (x) of GSIPred , that is, for

∇2
x f (x̄)+ ∑p

i=1 µ̄i∇2
xϕi (x̄), with

∇2
xϕi (x̄) = ∇2

x L(x̄, ȳi , γ̄ i )

−
( ∇2

yx Li

−DxvQi
0
(x̄, ȳi )

)T
⎛

⎝
D2

yLi −∇yvQi
0
(x̄, ȳi )

−DyvQi
0
(x̄, ȳi ) 0

⎞

⎠

−1 ( ∇2
yx Li

−DxvQi
0
(x̄, ȳi )

)

where DxvQi
0

stands for the matrix with rows Dxv j , j ∈ Qi
0 = Q0(x̄, ȳi ).

DyvQi
0

is defined similarly.

It is well-known [13] that the Robinson condition at x̄ just means that x̄ is a strongly stable
local minimizer. Note that the Robinson condition does not assume strict complementary
slackness. In the standard SIP case, ∇xL(x̄, ȳi , γ̄ i ) reduces to ∇x g(x̄, ȳi ), and in the Hes-
sian of the Lagrangian we obtain

∇2
xϕi (x̄) = ∇2

x g(x̄, ȳi )−
(∇2

yx g(x̄, ȳi )

0

)T
(

D2
yLi −∇vQi

0
(ȳi )

−DvQi
0
(ȳi ) 0

)−1 (∇2
yx g(x̄, ȳi )

0

)

Now consider a zero z of T from (12). Then the KKT conditions mentioned in (Q-I) and
(GSIP-I) hold by definition of T . The remaining conditions in the Reduction Ansatz and
the Robinson condition are algebraic conditions on the involved functions which can also
be imposed independently of the fact that we deal with lower level global maximizers and
upper level local minimizers. In this sense, we can make the following assumption:

Assumption 4.1 The Reduction Ansatz and the Robinson condition hold at z.

Theorem 4.2 Suppose that z̄ = (x̄ T , µ̄T , ȳT , γ̄ T )T is a zero of T from (12) with the choices
ψ = ψF B or ψ = ψmin, and that Assumption 4.1 holds at z̄. Then T is CD-regular at z̄.

Proof Let z̄ be a zero of T at which Assumption 4.1 holds, and let ψ denote either one of
the two NCP functions ψF B and ψmin . We only consider the case of two active indices, that
is, p = 2, the general case running along the same lines. We will distinguish two cases,
depending on whether upper level strict complementary slackness holds or not.

Case 1 Strict complementarity holds in the upper level problem.

We have ψ(µ̄i ,−g(x̄, ȳi )) = 0 and (µ̄i ,−g(x̄, ȳi )) �= 0, so that ψ is differentiable at
(µ̄i ,−g(x̄, ȳi )) with gradient

Dψ(µ̄i ,−g(x̄, ȳi )) =
{
(−1, 0), i �∈ P0(x̄)
(0,−1), i ∈ P0(x̄)

for i = 1, 2 (see (25) in Appendix A.1).

123



J Glob Optim (2008) 41:245–266 255

The Reduction Ansatz in the lower level problem implies ψ(γ̄ i
j ,−v j (x̄, ȳi )) = 0 and

(γ̄ i
j ,−v j (x̄, ȳi )) �= 0, so that ψ is also differentiable at (γ̄ i

j ,−v j (x̄, ȳi )) with gradient

Dψ(γ̄ i
j ,−v j (x̄, ȳi )) =

{
(−1, 0), j �∈ Q0(x̄, ȳi )

(0,−1), j ∈ Q0(x̄, ȳi )

for i = 1, 2 and j ∈ Q. Together this means that T is differentiable at z̄, and its Jacobian is
the matrix

DT (z̄) =
⎛

⎝
B11 B12 B13

B21 B22 0
B31 0 B33

⎞

⎠ (13)

with the following blocks:

B11 =
⎛

⎝
D2

x f (x̄)+ ∑2
i=1 µ̄i∇2

x Li ∇xL1 ∇xL2

λ1 Dx g(x̄, ȳ1) θ1 0
λ2 Dx g(x̄, ȳ2) 0 θ2

⎞

⎠

with ∇2
x Li = ∇2

x L(x̄, ȳi , γ̄ i ), etc.,

λi =
{

0, i �∈ P0(x̄)
1, i ∈ P0(x̄)

, θi =
{−1, i �∈ P0(x̄)

0, i ∈ P0(x̄)
, i = 1, 2,

B12 =
⎛

⎝
µ̄1∇2

xyL1 −µ̄1∇xv(x̄, ȳ1)

λ1 Dy g(x̄, ȳ1) 0
0 0

⎞

⎠,

B13 =
⎛

⎝
µ̄2∇2

xyL2 −µ̄2∇xv(x̄, ȳ2)

0 0
λ2 Dy g(x̄, ȳ2) 0

⎞

⎠,

and with

αi
j =

{
0, j �∈ Q0(x̄, ȳi )

1, j ∈ Q0(x̄, ȳi )
, β i

j =
{−1, j �∈ Q0(x̄, ȳi )

0, j ∈ Q0(x̄, ȳi )
,

Bi+1,1 =
( ∇2

yxLi 0 0
diag(αi )Dxv(x̄, ȳi ) 0 0

)

as well as

Bi+1,i+1 =
( ∇2

yLi −∇yv(x̄, ȳi )

diag(αi )Dyv(x̄, ȳi ) diag(β i )

)

, i = 1, 2.

Our aim is to show that DT (z̄) is nonsingular under Assumption 4.1. The main idea of
the proof is to consider an appropriate Schur complement in the block matrix DT (z̄) (see
Appendix A.2).

Note that the matrices B22 and B33 are nonsingular under the Reduction Ansatz. In fact,
by the definitions of α1 and β1, B22 is nonsingular if and only if the matrix

( ∇2
yL1 ∇yvQ1

0
(x̄, ȳ1)

DyvQ1
0
(x̄, ȳ1) 0

)
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is nonsingular. Since under the Reduction Ansatz we have (L I )Q(x̄) and (SO SC)Q(x̄) at ȳ1,
the latter matrix is nonsingular by Lemma A.4. Analogously the nonsingularity of B33 is
shown.

Consequently, according to Lemma A.3 the matrix DT (z̄) is nonsingular if and only if
the Schur complement

S = DT (z̄)/

(B22 0
0 B33

)

= B11 − (B12, B13)

(B22 0
0 B33

)−1 (B21

B31

)

= B11 − B12B−1
22 B21 − B13B−1

33 B31

is nonsingular. We will show that the latter is the case under the Robinson condition.
Let us calculate B12B−1

22 B21. From the block structures of B12 and B21 it is clear that only
the first and second block in the first block column of this matrix are nonzero, and we only
have to calculate

(
µ̄1∇2

xyL1 −µ̄1∇xv(x̄, ȳ1)

λ1 Dy g(x̄, ȳ1) 0

)

B−1
22

( ∇2
yxL1

diag(α1)Dxv(x̄, ȳ1)

)

. (14)

Now recall that the implicit functions y1(x) and γ 1(x) from Theorem 3.3 satisfy
⎛

⎜
⎜
⎜
⎝

∇yL(x, y1(x), γ 1(x))
ψ(γ 1

1 (x),−v1(x, y1(x)))
...

ψ(γ 1
q (x),−vq(x, y1(x)))

⎞

⎟
⎟
⎟
⎠

≡ 0. (15)

Taking derivatives with respect to x and evaluating at x̄ yields
( ∇2

yL1 −∇yv(x̄, ȳ1)

diag(α1)Dyv(x̄, ȳ1) diag(β1)

)(
Dy1(x̄)
Dγ 1(x̄)

)

+
( ∇2

yxL1

diag(α1)Dxv(x̄, ȳ1)

)

= 0

and, thus,

B−1
22

( ∇2
yxL1

diag(α1)Dxv(x̄, ȳ1)

)

= −
(

Dy1(x̄)
Dγ 1(x̄)

)

.

Consequently, the matrix in (14) becomes
(−µ̄1∇2

xyL1 Dy1(x̄)+ µ̄1∇xv(x̄, ȳ1)Dγ 1(x̄)
−λ1 Dy g(x̄, ȳ1)Dy1(x̄)

)

.

With an analogous calculation for B13B−1
33 B31 we arrive at

S =
⎛

⎝
˜∇2

x L ∇xL1 ∇xL2

λ1
(
Dx g(x̄, ȳ1)+ Dy g(x̄, ȳ1)Dy1(x̄)

)
θ1 0

λ2
(
Dx g(x̄, ȳ2)+ Dy g(x̄, ȳ2)Dy2(x̄)

)
0 θ2

⎞

⎠

with

˜∇2
x L = D2

x f (x̄)+
2∑

i=1

µ̄i

(
∇2

x Li + ∇2
xyLi Dyi (x̄)− ∇xv(x̄, ȳi )Dγ i (x̄)

)
.
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Using (10) it is not hard to see that

∇2ϕi (x̄) = ∇2
x Li + ∇2

xyLi Dyi (x̄)− ∇xv(x̄, ȳi )Dγ i (x̄)

holds for i = 1, 2, so that the matrix ˜∇2
x L coincides with ∇2

x L from condition (GSIP-II).
Next we show

Dx g(x̄, ȳi )+ Dy g(x̄, ȳi )Dyi (x̄) = DxLi (16)

for i = 1, 2. In fact, for i = 1 we have

Dy g(x̄, ȳ1)Dy1(x̄) =
q∑

j=1

γ̄ 1
j Dyv j (x̄, ȳ1)Dy1(x̄). (17)

The implicit functions from Theorem 3.3 particularly satisfy the identity

γ 1
j (x) · v j (x, y1(x)) ≡ 0, j ∈ Q.

Taking derivatives with respect to x yields

Dγ 1
j (x) v j (x, y1(x))+ γ 1

j (x)
(
Dxv j (x, y1(x))+ Dyv j (x, y1(x))Dy1(x)

) ≡ 0

for j ∈ Q, where the first term vanishes at x̄ for j ∈ Q0(x̄, ȳ1) due to v j (x̄, ȳ1) = 0, and
for j �∈ Q0(x̄, ȳ1) because of γ 1

j (x) ≡ 0 and, thus, Dγ 1
j (x̄) = 0. Evaluating the remaining

terms at x̄ implies

γ̄ 1
j Dyv j (x̄, ȳ1)Dy1(x̄) = −γ̄ 1

j Dxv j (x̄, ȳ1), j ∈ Q, (18)

and a combination of (17) and (18) yields

Dy g(x̄, ȳ1)Dy1(x̄) = −
q∑

j=1

γ̄ 1
j Dxv j (x̄, ȳ1).

This shows (16) for i = 1, and analogously for i = 2. As a consequence, the Schur comple-
ment further simplifies to

S =
⎛

⎝
∇2

x L ∇xL1 ∇xL2

λ1 DxL1 θ1 0
λ2 DxL2 0 θ2

⎞

⎠ .

By the definitions of λi and θi , i = 1, 2, S is nonsingular if and only if the matrix
( ∇2

x L ∇xLP0(x̄)

DxLP0(x̄) 0

)

is nonsingular. Under the Robinson condition the latter is true in view of Lemma A.4. This
completes the proof for Case 1.

Case 2 Strict complementarity is violated in the upper level problem.

In this case we have µ̄i = g(x̄, ȳi ) = 0 for at least one i ∈ {1, 2}. Here we only consider the
case that strict complementarity is violated at i = 1 with P0(x̄) = {1, 2}, the general case
running along the same lines.

In the present case T is not differentiable at z̄ since ψ is not differentiable at the origin.
The Clarke (in fact, convex) subdifferentials of ψF B and ψmin are given in Lemma A.1 in
the Appendix. Moreover, the generalized Jacobian ofψ(µ1,−g(x, y1)) can be computed by
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the Chain Rule II and Proposition 2.3.6 from [2], noting that convex functions are regular.
In fact, its generalized Jacobian with respect to (x, µ1, y1) is

{(
λ1 Dx g(x, y1), θ1 , λ1 Dy g(x, y1)

) | (−λ1, θ1) ∈ ∂ψ(0, 0)
}
. (19)

This means that the elements of ∂T (z̄) can be parameterized by

{W (λ1, θ1)| (−λ1, θ1) ∈ ∂ψ(0, 0)},
where W (λ1, θ1) is a matrix of exactly the form from (13). Consequently, proving CD-regu-
larity of T at z̄ amounts to showing nonsingularity of all matrices W (λ1, θ1)with (−λ1, θ1) ∈
∂ψ(0, 0).

Choose any (λ1, θ1) with (−λ1, θ1) ∈ ∂ψ(0, 0). With the same arguments as in Case 1
we find that W (λ1, θ1) is nonsingular if and only if the matrix

S(λ1, θ1) =
⎛

⎝
∇2

x L ∇xL1 ∇xL2

λ1 DxL1 θ1 0
λ2 DxL2 0 θ2

⎞

⎠

is nonsingular. The latter, however, is true by [16, Theorem 4.2] for finitely constrained
programming problems. This completes the proof. �

Remark 4.3 In the special case of SIP, an explicit proof of Theorem 4.2 would be shorter
due to the simplifications that ∇xLi is replaced by ∇x g(x̄, ȳi ), ∇xyLi by ∇xy g(x̄, ȳi ), and
∇xv(x̄, ȳi ) vanishes.

Remark 4.4 Assumption 4.1 is a weak assumption in the following sense: generically, the
Reduction Ansatz holds at all local minimizers of GSIP, and they are even nondegenerate
critical points of the locally reduced problem GSIPred . That is, generically even upper level
strict complementarity and the Robinson condition hold. While this fact has been known for
standard SIP for some time [21], it is a recent result for GSIP [5]. In view of this genericity,
one can expect Assumption 4.1 to be satisfied in practical applications.

Altogether, in Sect. 4 we have shown that under the weak Assumption 4.1, in view of Theo-
rems 2.1 and 4.2, the semismooth Newton method from (1) converges q-quadratically.

5 Numerical examples

In this section we report on some numerical experiments with the generalized damped semi-
smooth Newton approach proposed in [18]. In fact, let

θ(z) = 1

2
T (z)T T (z)

be the merit function. If ψF B is used, then θ is continuously differentiable with the gradient
given by

∇θ(z) = W T T (z),

where W ∈ ∂T (z), the generalized Jacobian of T at z. In the case ofψmin , the merit function
is not continuously differentiable. We use ψF B whenever the gradient of the merit function
is needed in the algorithm.
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Algorithm 5.1 ([18])
Step 1. Let z0 ∈ R

N , σ, ρ ∈ (0, 1), η > 0, a > 2 and k = 0.
Step 2. If T (zk) = 0, stop. Otherwise, let dk be a solution of

T (zk)+ W kd = 0, (20)

where W k ∈ ∂T (zk).
If (20) is not solvable, or if

∇θ(zk)T dk > −η∥∥dk
∥
∥a
,

set dk = −∇θ(zk)

Step 3. Find a minimum nonnegative integer, say, mk , such that

θ(zk + ρmk dk) ≤ θ(zk)+ σρmk ∇θ(zk)T dk,

Let αk = ρmk .
Step 4. Let zk+1 = zk + αkdk and k = k + 1. Go to Step 2.

For the implementation of the algorithm, at iterates which are differentiability points of T
we do not use the Jacobian matrix DT in the form from the proof of Theorem 4.2, since the
iterates cannot be expected to be zeros of T . Thus we may not use the simplified gradients of
the NCP functions from (25), but the ones from (23), (24). For ψF B this results in replacing
λi , θi , α

i
j , β

i
j , i ∈ P, j ∈ Q, by

λi = g(x̄, ȳi )
√
µ̄2

i + g(x̄, ȳi )2
+ 1, θi = µ̄i

√
µ̄2

i + g(x̄, ȳi )2
− 1, (21)

and

αi
j = v j (x̄, ȳi )

√
(γ̄ i

j )
2 + v j (x̄, ȳi )2

+ 1, β i
j = γ̄ i

j
√
(γ̄ i

j )
2 + v j (x̄, ȳi )2

− 1. (22)

whereas for ψmin the gradients in (24) and (25) coincide.
At nondifferentiability points of T we choose the element W from the generalized Jaco-

bian of T which corresponds to the midpoints of the subdifferentials of the NCP functions.
In view of (19) and Lemma A.1 this means that for ψF B we use λi = 1, θi = −1, and for
ψmin we use λi = 1/2, θi = −1/2.

The Algorithm 5.1 is implemented in Matlab 7.3. Throughout the computational exper-
iments, the parameters used in the algorithm are ρ = 0.5, a = 2.1, η = 10−8 and σ = 0.1.
The algorithm is terminated when ||T (zk)|| < 10−6.

In the numerical examples we test bothψF B andψmin as the NCP function. However, due
to the mentioned smoothness properties, in the merit function we use ψF B for both cases.

The test problems in Examples 5.2 and 5.3 are taken from [22].

Example 5.2 Design Centering:

In a general design centering problem, the aim is to maximize some measure (e.g., the vol-
ume Vol(B(x))) of a body B(x) depending on a parameter under the constraint that B(x) is
contained in a given fixed body G:

max
x∈Rn

Vol(B(x)) s.t. B(x) ⊂ G
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Let G = {y ∈ R
2 | g(y) ≤ 0} with

g(y) =
⎛

⎝
−y1 − y2

2
y1/4 + y2 − 3/4

−y2 − 1

⎞

⎠ .

The GSIP formulation of the general design centering problem is as follows:

max
x∈Rn

Vol(B(x)) s.t. g(y) ≤ 0 f orall y ∈ B(x).

Problem 1 The aim is to find the largest disc with free center and radius inscribed in G. We
then have n = 3 and

B(x) = {y ∈ R
2 | (y1 − x1)

2 + (y2 − x2)
2 − x2

3 ≤ 0}, Vol(B(x)) = πx2
3 .

In theψF B case, with the starting point x0 = (0, 0, 1) the semismooth Newton method obtains
the optimal value 1.8606 with x̄=(0.749,−0.230, 0.770) and ȳ1=(−0.008,−0.091), ȳ2 =
(0.935, 0.516), ȳ3 = (0.749,−1) for the optimal point. We have ||T (z̄)|| = 7.1239 · 10−10

after 4 iterations within 0.23 seconds of CPU time. In the ψmin case, the optimal point and
the optimal value are obtained in 4 iterations with ||T (z̄)|| = 3.3466 · 10−13 within 0.42
seconds of CPU time.

Problem 2 The aim is to find the largest ellipse with free center and axis lengths inscribed
in G. We have n = 4 and

B(x) =
{

y ∈ R
2 | (y1 − x1)

2

x2
3

+ (y2 − x2)
2

x2
4

− 1 ≤ 0

}

, Vol(B(x)) = πx3x4.

In theψF B case, with the starting point x0 = (0, 0, 1, 1) the semismooth Newton method ob-
tains the optimal value 3.484 with x̄ = (2.013,−0.5, 2.217, 0.5) and ȳ1=(−0.167,−0.408),
ȳ2 = (3.658,−0.165), ȳ3 = (2.013,−1) for the optimal point. We have ||T (z̄)|| =
3.3603 · 10−10 after 6 iterations within 0.34 seconds of CPU time. In the ψmin case, the opti-
mal point and the optimal value are obtained in 6 iterations with ||T (z̄)|| = 2.9269 · 10−11

within 0.57 seconds of CPU time.

Example 5.3 Robust Optimization:

In robust optimization problems the data are uncertain and only known to belong to some
uncertainty set which may be taken as infinite index set in semi-infinite programming. The
following robust portfolio optimization problem is originally taken from [1] and treated in
different variants in [22].

Let 1 e be invested in a portfolio comprised of K shares. At the end of a given period the
return of share i is yi > 0. The goal is to determine the amount xi to be invested in share i ,
i = 1, . . . , K , so as to maximize the end-of-period portfolio value yT x .

Since y is uncertain, the assumption that y varies in some non-empty compact set Y ⊂ R
K

leads us to the following semi-infinite programming problem:

max
x,z

z s.t. z − yT x ≤ 0 for ally ∈ Y,
K∑

i=1

xi = 1, x ≥ 0.

In fact, this is a linear semi-infinite programming problem.

123



J Glob Optim (2008) 41:245–266 261

Problem 1 Let the uncertainty set Y be in the form:

Y =
{

y ∈ R
K
∣
∣
∣
∣

K∑

i=1

(yi − ȳi )
2

σ 2
i

≤ θ2

}

where ȳi is some nominal value of yi , σi is scaling parameter and θ measures the risk aversion.
With the particular choices from [1]

ȳi = 1.15 + i
0.05

K
, i = 1, . . . , K

σi = 0.05

θK

√
K (K + 1)i

2
, i = 1, . . . , K

θ = 1.5

the optimal value is 1.15 for any K (see [1]). The optimal policy in this situation is to
invest equally in all shares and xi = 1/K , i = 1, . . . , K . We use the starting point x0 =
(1, 0, . . . , 0) in R

K+1.
The columns of the following tables are labeled as follows: K is the number of shares, ov

is the optimal value, ‖T(z̄)‖ is the Euclidean norm of T at the last iteration point, CPU time
is the CPU time for iterations in seconds, iter is the number of iterations. Note that this
optimization problem is convex so that the computed KKT point even is a global maximizer
Numerical results are given in Tables 1 and 2.

Problem 2 Let the uncertainty set Y depend on x in which the risk aversion of the decision
maker depends on the point x . Replacing θ by �(x), Y (x) is given in the form:

Y (x) =
{

y ∈ R
K
∣
∣
∣
∣

K∑

i=1

(yi − ȳi )
2

σ 2
i

≤ �(x)2
}

with

�(x) = θ

(

1 +
K∑

i=1

(

xi − 1

N

)2
)

In this case we have an example for generalized semi-infinite programming problems.
We use the starting point x0 = (1, 0, . . . , 0) in R

K+1. Since the optimization problem is not
convex, we have no guarantee that the computed KKT point is a global maximizer Tables 3
and 4.

It can be checked that in the problems in Example 5.2 and 5.3 strict complementarity
holds in the upper and lower level problems, so that we actually have a smooth system. Now,
for an illustration of the case that strict complementarity is violated in the upper level, we
give the following example.

Table 1 Optimal portfolio,
Problem 1 with ψFB

K ov ||T(z̄)|| CPU time iter

10 1.15 5.2928 · 10−8 0.36 11
50 1.15 5.7463 · 10−7 1.43 11
100 1.15 1.7676 · 10−10 8.61 11
150 1.15 4.2121 · 10−10 25.17 12
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Table 2 Optimal portfolio,
Problem 1 with ψmin

K ov ||T(z̄)|| CPU time iter

10 1.15 3.2058 · 10−7 0.54 10
50 1.15 2.5966 · 10−13 1.39 11
100 1.15 7.5748 · 10−10 5.58 11
150 1.15 1.0056 · 10−12 15.35 12

Table 3 Optimal portfolio,
Problem 2 with ψFB

K ov ||T(z̄)|| CPU time iter

10 0.7033 4.2379 · 10−8 0.28 5
50 0.9638 2.3920 · 10−9 0.72 7
100 1.0259 4.0606 · 10−7 2.87 7
150 1.0535 8.7426 · 10−10 8.76 8

Table 4 Optimal portfolio,
Problem 2 with ψmin

K ov ||T(z̄)|| CPU time iter

10 0.7033 1.8731 · 10−11 0.51 4
50 0.9638 9.2578 · 10−9 1.43 6
100 1.0259 4.2917 · 10−10 7.06 7
150 1.0535 9.9549 · 10−10 34.4 11

Example 5.4 Strict complementarity violated in the upper level:

Let us consider the following problem:

min f (x) = (x1 − 1)2 + (x2 − 1)2 s.t. g(x, y) ≤ 0 ∀ y ∈ Y

where

g(x, y) = (y1 − x1)+ (y2 − x2)

and

Y = {y ∈ R
2 | v1(y) = y2

1 − 1 ≤ 0, v2(y) = y2
2 − 1 ≤ 0}.

The feasible set is M = {x ∈ R
2| x1 + x2 ≥ 2}, so that strict complementarity is violated at

the solution x̄ = (1, 1). In the ψF B case with the starting point x0 = (1, 2) the semismooth
Newton method obtains the optimal value 0 with x̄ = (1, 1) and ȳ = (1, 1) for the opti-
mal point. We have ||T (z̄)|| = 1.6391 · 10−10 after 7 iterations within 0.14 s of CPU time.
In the ψmin case, the optimal point and the optimal value are obtained in 6 iterations with
||T (z̄)|| = 5.3765 · 10−10 within 0.28 s of CPU time. This shows that the method also works
well for this problem where strict complementarity is violated in the upper level.

Finally, although we have not provided a theoretical foundation for this case, we also
test the method for problems with violated strict complementarity in the lower level. At the
corresponding nondifferentiability points the values of αi

j and β i
j are chosen according to

the same rule as explained above for λi and θi .

Example 5.5 Strict complementarity violated in the lower level:

Problem 1 Let us consider the following problem:

min f (x) = x2
1 + x2

2 s.t. g(x, y) ≤ 0 ∀ y ∈ Y
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where

g(x, y) = −(y1 − x1)
2 − (y2 − x2)

2

and

Y = {y ∈ R
2 | v1(y) = y1 ≤ 0, v2(y) = y2 ≤ 0}

The unique unconstrained minimum of the objective function x̄ = (0, 0) is feasible and
therefore optimal for this problem. Its active index set only contains the point ȳ = (0, 0), and
lower level strict complementarity is violated there. In the ψF B case with the starting point
x0 = (1, 1) the semismooth Newton method obtains the optimal value 0 with x̄ = (0, 0) and
ȳ = (0, 0) for the optimal point. We have ||T (z̄)|| = 9.7946 ·10−7 after 115 iterations within
1.09 s of CPU time. In the ψmin case, the optimal point and the optimal value are obtained
in 2 iterations with ||T (z̄)|| = 0 within 0.25 s of CPU time. This shows that the method also
works well for this problem where strict complementarity is violated in the lower level.

Problem 2 Another example for the case of violated strict complementarity in the lower
level is given in [12]:

min f (x) = x2
1 + 3x2

2 + x3 s.t. g(x, y) ≤ 0 ∀ y ∈ Y

where

g(x, y) = −1

2
(y1 − x1)

2 − (y2 − x2)
2 − x3

and

Y = {y ∈ R
2 | v1(y) = −y1 − y2 ≤ 0, v2(y) = −y2 ≤ 0, v3(y) = y2

1 + y2
2 − 1 ≤ 0}.

In the ψF B case with the starting point x0 = (1, 1, 1) the semismooth Newton method
obtains the optimal value 0 with x̄ = (0, 0, 0) and ȳ = (0, 0) for the optimal point. We have
||T (z̄)|| = 5.4371 · 10−9 after 10 iterations within 0.16 s of CPU time. In the ψmin case, the
optimal point and the optimal value are obtained in 16 iterations with ||T (z̄)|| = 2.3642·10−17

within 0.44 s of CPU time.

Problem 3 For the case of violated strict complementarity simultaneously in the upper and
lower level problems, consider the following variation of Problem 2

min f (x) = x2
1 + x2

2 + x2
3 s.t. g(x, y) ≤ 0 ∀ y ∈ Y

where

g(x, y) = −1

2
(y1 − x1)

2 − (y2 − x2)
2 − x3

and

Y = {y ∈ R
2 | v1(y) = −y1 − y2 ≤ 0, v2(y) = −y2 ≤ 0, v3(y) = y2

1 + y2
2 − 1 ≤ 0}.

In the ψF B case with the starting point x0 = (1, 1, 1) the semismooth Newton method
obtains the optimal value 0 with x̄ = (0, 0, 0) and ȳ = (0, 0) for the optimal point. We have
||T (z̄)|| = 2.0792 · 10−7 after 8 iterations within 0.17 s of CPU time. In the ψmin case, the
optimal point and the optimal value are obtained in 5 iterations with ||T (z̄)|| = 0 within
0.29 s of CPU time. The method works also for this problem where strict complementarity
is violated simultaneously in the upper and lower level problems.

In all of the examples, the performance of the method does not change significantly if the
NCP function ψF B is replaced by ψmin , in both systems (7) for SIP and (12) for GSIP.
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6 Final remarks

The problems given in Example 5.5 show that Algorithm 5.1 may even converge if lower
level strict complementarity is violated. The canonical lower level regularity condition which
takes care of this situation is the Robinson condition. However, the auxiliary functions ϕi ,
i ∈ P , of the locally reduced problem GSIPred are then not twice continuously differentiable
anymore, and the relation of an appropriate upper level regularity condition to CD-regularity
becomes essentially more complicated. This situation is currently under investigation and
will be subject of a future publication.
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Appendix A

A.1 NCP functions

Both functions ψF B(a, b) = √
a2 + b2 − a − b and ψmin(a, b) = − min{a, b} are convex

on R
2, and they are differentiable on R

2 except for the origin and the diagonal {(a, b) ∈
R

2| a = b}, respectively. For (a, b) �= 0 we have

DψF B(a, b) =
(

a√
a2 + b2

− 1,
b√

a2 + b2
− 1

)

(23)

and for a �= b

Dψmin(a, b) =
{
(−1, 0), a < b
(0,−1), a > b

. (24)

In their (identical) zero set, the only point of nondifferentiability for either of the two functions
is the origin, and their gradients for (a, b) �= 0 coincide:

DψF B(a, b) = Dψmin(a, b) =
{
(−1, 0), a = 0
(0,−1), b = 0

. (25)

At the origin we calculate subdifferentials of the convex functionsψF B andψmin as follows.
We denote the usual directional derivative of ψ in the direction d at x̄ by ψ ′(x̄; d) and the
generalized directional derivative of ψ (in the sense of Clarke) in the direction d at x̄ by
ψ0(x̄; d). For completeness, we give the proofs of the following well-known results.

Lemma A.1 The following assertions hold:

(i) ψ ′
F B(0; d) = ψ0

F B(0; d) = ψF B(d) for any d ∈ R
2,

(ii) ψ ′
min(0; d) = ψ0

min(0; d) = ψmin(d) for any d ∈ R
2,

(iii) ∂ψF B(0) = {s ∈ R
2 | (s1 + 1)2 + (s2 + 1)2 ≤ 1},

(iv) ∂ψmin(0) = conv{(−1, 0)T , (0,−1)T }.
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Proof Parts (i) and(ii) can easily be checked by calculation. In part (iii), by definition of the
Clarke subdifferential for real-valued functions, we have

∂ψF B(0) = {s ∈ R
2| ψ0(0; d) ≥ dT s for all d ∈ R

2}
= {s̃ ∈ R

2| dT s̃ ≤ ||d||2, for all d ∈ R
2} − (1, 1)T

= {s̃ ∈ R
2| max

d∈∂B(0,1)
dT s̃ ≤ 1} − (1, 1)T

where s̃ = s+(1, 1)T and where ∂B(0, 1) denotes the boundary of the unit ball. The Cauchy-
Schwarz inequality dT s̃ ≤ ||d||2||s̃||2 implies that maxd∈∂B(0,1) dT s̃ ≤ ||s̃||2 for all s̃ ∈ R

2.
On the other hand, with d̄ = s̃/||s̃||2 ∈ ∂B(0, 1), we find maxd∈∂B(0,1) dT s̃ ≥ d̄T s̃ = ||s̃||2
for all s̃ ∈ R

2 \ {0}, the case s̃ = 0 being trivial. This shows

∂ψF B(0) = {s̃ ∈ R
2| ||s̃||2 ≤ 1} − (1, 1)T

and completes the proof of part (iii).
To see part (iv), note that by definition of the Clarke subdifferential for vector-valued

functions we have

∂ψmin(0) = conv{ lim
x→0

∇ψmin(x) | x ∈ Dψ } = conv{(−1, 0)T , (0,−1)T }
where Dψ is set of differentiability points of ψmin . �

A.2 Block matrices

Definition A.2 Consider the quadratic block matrix

A =
(

E F
G H

)

where H is quadratic and nonsingular. Then the matrix

S = A/H = E − F H−1G

is called the Schur complement of H in A.

Lemma A.3 ([15]) Let a block matrix A be given as in Definition A.2 and let H be nonsin-
gular. Then

det(A) = det(H) · det(A/H).

In particular, A is nonsingular if and only if A/H is nonsingular.

Lemma A.4 ([11]) For A ∈ SN and B ∈ R
N×M
K we have

In

(
A B

BT 0M×M

)

= In(A|Ker(BT ))+ (K , K ,M − K ). (26)

Here, In(A) denotes the inertia-triple of A, SN denotes the set of symmetric matrices in
R

N×N and R
N×M
K denotes the set of matrices in R

N×M with rank K . The null space of a
matrix A is denoted by Ker(A).

By Lemma A.4, we have that A|Ker(BT ) is nonsingular and the columns of B are linearly
independent if and only if the matrix

(
A B

BT 0

)

is nonsingular.
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